You are **NOT** allowed to use any type of calculators.

1 Linear systems of equations

(2+3+3+2+2+3=15 pts)

Consider the linear system of equations

in the unknowns x, y, and z.

- (a) Write down the corresponding augmented matrix.
- (b) Put it into the row echelon form.
- (c) Determine the values of a, b, and c such that the system is consistent.
- (d) Determine the lead and free variables when the system is consistent.
- (e) Find the solution set.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, row echelon form, consistency, and set of solutions.

SOLUTION:

1a: The augmented matrix is given by

1b: By applying row operations, we obtain:

$$\begin{bmatrix} 2 & -1 & 3 & | & a \\ 1 & -1 & 1 & | & b \\ 7 & -2 & 12 & | & c \end{bmatrix} \xrightarrow{(1)} \begin{bmatrix} 1 & -2 & 0 & | & b \\ 2 & -1 & 3 & | & a \\ 7 & -2 & 12 & | & c \end{bmatrix} \xrightarrow{(2)} \begin{bmatrix} 2 & -2 & 0 & 0 \\ 3 & = & 3 & -7 & 0 \\ \hline & & & & & & & \\ \hline & & & & & & & \\ 0 & 5 & 5 & | & c & -7b \end{bmatrix} \xrightarrow{(2)} \begin{bmatrix} 1 & -1 & 1 & | & b \\ 0 & 1 & 1 & | & a & -2b \\ 0 & 5 & 5 & | & c & -7b \end{bmatrix} \xrightarrow{(2)} \begin{bmatrix} 1 & -1 & 1 & | & b \\ 0 & 1 & 1 & | & a & -2b \\ 0 & 5 & 5 & | & c & -7b \end{bmatrix}$$

1c: The system is consistent of and only if c = 5a - 3b.

1d: When c = 5a - 3b, the lead variables are x and y whereas z is the free variable.

1e: From the echelon form, we see that

$$y = a - 2b - z$$

and

$$x = b + y - z = a - b - 2z.$$

This leads to the general solution

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a-b \\ a-2b \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}.$$

Consider the $n \times n$ matrix of the form

$$B_n = \begin{bmatrix} 2 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \end{bmatrix}$$

Let $D_n = \det(B_n)$.

- (a) Find D_1 , D_2 , and D_3 .
- (b) Expand along the first row and find numbers a and b such that $D_n = aD_{n-1} + bD_{n-2}$ for $n \ge 3.$
- (c) Prove by induction on n that $D_n = n + 1$ for $n \ge 3$.

REQUIRED KNOWLEDGE: Determinants, row/column operations.

F0

SOLUTION:

2a: Note that

$$B_1 = 2,$$
 $B_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $B_3 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.

Then, we have

$$D_1 = 2,$$
 $D_2 = 3,$ and $D_3 = 4.$

2b: By expanding along the first row, we get

$$D_n = \begin{vmatrix} 2 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix}$$
$$= 2 \cdot \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix}$$

Now, we observe that the first determinant on the right hand side equals D_{n-1} . Expanding the second one along the first column, we see that it equals D_2 . This means that

$$D_n = 2D_{n-1} - D_{n-2}.$$

2c: From (2b), we already know that $D_3 = 4$. Assume that there exists n such that

for all k with $3 \leq k \leq n$. Note that

$$D_{n+1} = 2D_n - D_{n-1} = 2(n+1) - n = n+2.$$

Hence, $D_n = n + 1$ for all $n \ge 3$.

- (a) Let $X \in \mathbb{R}^{n \times n}$ and $S(X) = \{A \in \mathbb{R}^{n \times n} \mid AX + XA = 0\}$. Show that S(X) is a subspace of $\mathbb{R}^{n \times n}$. For n = 3 and $X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, find a basis for S(X) and find its dimension.
- (b) Let a and $b \neq 0$ be real numbers. Consider the functions $f(x) = e^{ax} \sin(bx)$, $g(x) = e^{ax} \cos(bx)$ and the subspace $S = \operatorname{span}(f,g)$ of the vector space of continuous functions. Let $L: S \to S$ be given by L(h) = h'' where h'' denotes the second derivative of h. Show that L is a linear transformation. Find its matrix representation relative to the basis (f,g).

REQUIRED KNOWLEDGE: Vector spaces, subspaces, basis, dimension, linear transformations, matrix representations.

SOLUTION:

3a: To show that S(X) is a subspace, we begin with the observation that $0_{n \times n} \in S(X)$, that is $S(X) \neq \emptyset$. Let α be a scalar and $A \in S(X)$. Note that

$$(\alpha A)X + X(\alpha A) = \alpha(AX + XA) = 0.$$

Hence, we obtain $\alpha A \in S(X)$. This means that S(X) is closed under scalar multiplication. Now, let A and B belong to S(X) and note that

$$(A+B)X + X(A+B) = (AX + XA) + (BX + XB) = 0.$$

Thus, we see that $A + B \in S(X)$. This means that S(X) is closed under vector addition. Consequently, S(X) is a subspace.

Let n = 3 and $X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Suppose that

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in S(X).$$

By definition of S(X), we have

$$0 = AX + XA = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
$$= \begin{bmatrix} 0 & a_{11} & 0 \\ 0 & a_{21} & 0 \\ 0 & a_{31} & 0 \end{bmatrix} + \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{21} & a_{11} + a_{22} & a_{23} \\ 0 & a_{21} & 0 \\ 0 & a_{31} & 0 \end{bmatrix}$$

As such, we obtain $a_{11} + a_{22} = 0$, $a_{21} = a_{23} = a_{31} = 0$. Therefore, A must be of the form

$$A = \begin{bmatrix} a & b & c \\ 0 & -a & 0 \\ 0 & d & e \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, we see that the matrices $\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$ span the subspace S(X). Also note that they are linearly independent. This means that they form a basis and the dimension of S(X) is 5.

3b: Let α and β be scalars and h and j belong to S. Note that

$$L(\alpha h + \beta j) = (\alpha h + \beta j)'' = \alpha h'' + \beta j'' = \alpha L(h) + \beta L(j).$$

Therefore, L is a linear transformation.

In order to find the matrix representation, we need to apply the transformation on the basis vectors. First note that

$$(e^{ax}\sin(bx))' = a(e^{ax}\sin(bx)) + b(e^{ax}\cos(bx))$$
$$(e^{ax}\cos(bx))' = -b(e^{ax}\sin(bx)) + a(e^{ax}\cos(bx)).$$

As such, we have

$$(e^{ax}\sin(bx))'' = a^2(e^{ax}\sin(bx)) + ab(e^{ax}\cos(bx)) + ab(e^{ax}\cos(bx)) - b^2(e^{ax}\sin(bx)) = (a^2 - b^2)(e^{ax}\sin(bx)) + (2ab)(e^{ax}\cos(bx)) (e^{ax}\cos(bx))'' = -ab(e^{ax}\sin(bx)) - b^2(e^{ax}\cos(bx)) + a^2(e^{ax}\cos(bx)) - ab(e^{ax}\sin(bx)) = (-2ab)(e^{ax}\sin(bx)) + (a^2 - b^2)(e^{ax}\cos(bx)).$$

Consequently, the matrix representation is given by

$$\begin{bmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{bmatrix}.$$

Find the parabola of the form $y = a + bx^2$ that gives the best least squares approximation to the points:

REQUIRED KNOWLEDGE: Least-squares problem, normal equations.

SOLUTION:

The corresponding least squares problem is given by

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}.$$

This leads to the following normal equations:

$$\begin{bmatrix} 3 & 5\\ 5 & 17 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} 5\\ 14 \end{bmatrix}.$$

Therefore, we obtain the least squares solution as

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 5 & 17 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 14 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 17 & -5 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 14 \end{bmatrix} = \begin{bmatrix} \frac{15}{26} \\ \frac{17}{26} \end{bmatrix}.$$

- (a) Let $M \in \mathbb{R}^{n \times n}$ and $p(s) = p_k s^k + p_{k-1} s^{k-1} + \dots + p_1 s + p_0$ be a polynomial. Show that if λ is an eigenvalue of M then $p(\lambda)$ is an eigenvalue of $p(M) = p_k M^k + p_{k-1} M^{k-1} + \dots + p_1 M + p_0 I_n$.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be such that $A^2 A + I_n = 0$.
 - (i) Show that A is nonsingular.
 - (ii) Show that n is an even number.
 - (iii) Show that the characteristic polynomial of A is $(\lambda^2 \lambda + 1)^{\frac{n}{2}}$.
 - (iv) Show that $tr(A) = \frac{n}{2}$ and det(A) = 1.

REQUIRED KNOWLEDGE: Characteristic polynomial, eigenvalues, determinant, trace, and determinant.

SOLUTION:

5a: Suppose that λ is an eigenvalue of M. Then, there must exists a nonzero x such that $Mx = \lambda x$. Note that $M^k x = \lambda^k x$. This means that $p(M)x = p(\lambda)x$. Since x is not zero, we can conclude that $p(\lambda)$ is an eigenvalue of p(M).

5a: alternative Let x be such that Ax = 0. Then, we have $0 = (A^2 - A + I)x = x$. Hence, A is nonsingular.

5a: yet another alternative From $A^2 - A + I = 0$, we see that $A - A^2 = I$. This leads to A(I - A) = I. Therefore, A is nonsingular and I - A is its inverse.

5b: (i) From (5a), we know that if λ is an eigenvalue of A then $\lambda^2 - \lambda + 1$ must be an eigenvalue of $A^2 - A + I$. Since $A^2 - A + I = 0$, we see that if λ is an eigenvalue of A then $\lambda^2 - \lambda + 1 = 0$. Hence, we can conclude that all eigenvalues of A must be of the form $\frac{1}{2} \pm \frac{\sqrt{3}}{2}$. Therefore, A is nonsingular as zero is not an eigenvalue.

(ii) Suppose that n is odd. Since A is a real matrix, it must have a real eigenvalue. However, we already know from (i) that all eigenvalues of A are nonreal. Therefore, n must be even.

(iii) Since nonreal eigenvalues of a real matrix must occur in conjugate pairs. It follows from (i) that the characteristic polynomial of A is $(\lambda^2 - \lambda + 1)^{\frac{n}{2}}$.

(iv) We know that the trace of a matrix is equal to sum of its eigenvalues whereas its determinant equals the product of its eigenvalues. Note that $(\frac{1}{2} + \frac{\sqrt{3}}{2}) + (\frac{1}{2} - \frac{\sqrt{3}}{2}) = 1$ and $(\frac{1}{2} + \frac{\sqrt{3}}{2})(\frac{1}{2} - \frac{\sqrt{3}}{2}) = 1$. Therefore, it follows from (iii) that $tr(A) = \frac{n}{2}$ and det(A) = 1.

6 Eigenvalues/vectors

Consider the matrix

$$M = \begin{bmatrix} a & 2b & 0 \\ b & a & b \\ 0 & 2b & a \end{bmatrix}$$

where a and $b \neq 0$ are real numbers.

- (a) Show that a is an eigenvalue of M.
- (b) Find an eigenvector corresponding to the eigenvalue a.
- (c) Find other eigenvalues of M and corresponding eigenvectors.
- (d) Determine the values of a and b such that M is nonsingular.
- (e) Is M diagonalizable? If so, find a diagonalizer.

REQUIRED KNOWLEDGE: Eigenvalues, eigenvectors, and diagonalization, matrix exponential.

SOLUTION:

6a: Note that

$$\det(aI - M) = \det(\begin{bmatrix} 0 & 2b & 0 \\ b & 0 & b \\ 0 & 2b & 0 \end{bmatrix}) = 0$$

since the first and the third rows of M are the same. Therefore, a must be an eigenvalue.

6b: We need to solve the homogeneous system

$$0 = (aI - M)x = \begin{bmatrix} 0 & 2b & 0 \\ b & 0 & b \\ 0 & 2b & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0.$$

Since $b \neq 0$, we see that $x_2 = 0$. Since $bx_1 + bx_3 = 0$, we see that

$$\begin{bmatrix} 1\\0\\-1\end{bmatrix}$$

is an eigenvector corresponding to the eigenvalue a.

6c: The characteristic polynomial of M is given by

$$\det(\lambda I - M) = \det \begin{bmatrix} \lambda - a & -2b & 0\\ -b & \lambda - a & -b\\ 0 & -2b & \lambda -a \end{bmatrix} = (\lambda - a)^3 - 2b^2(\lambda - a) - 2b^2(\lambda - a)$$
$$= (\lambda - a)^3 - 4b^2(\lambda - a)$$
$$= (\lambda - a)\left((\lambda - a)^2 - 4b^2\right)$$

Therefore, we see that the eigenvalues are a and $a \pm 2b$.

For the eigenvalue a + 2b, the eigenvectors are nontrivial solution of the homogeneous system

$$0 = ((a+2b)I - M)x = \begin{bmatrix} 2b & -2b & 0\\ -b & 2b & -b\\ 0 & -2b & 2b \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0.$$

Then, an eigenvector corresponding to the eigenvalue a + 2b is given by

For the eigenvalue a - 2b, the eigenvectors are nontrivial solution of the homogeneous system

 $\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}.$

$$0 = ((a-2b)I - M)x = \begin{bmatrix} -2b & -2b & 0\\ -b & -2b & -b\\ 0 & -2b & -2b \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0.$$

Then, an eigenvector corresponding to the eigenvalue a - 2b is given by

$$\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}.$$

6d: We know that the determinant is the product of eigenvalues. Therefore, M is nonsingular if and only if $a \neq 0$ and $a \neq 2b$ and $a \neq -2b$.

6e: Since $b \neq 0$, eigenvalues are distinct. As such, M is diagonalizable. Alternatively, M is diagonalizable since there are three linearly independent eigenvectors. A diagonalizer can be obtained from the eigenvector as follows:

$$\begin{bmatrix} a & 2b & 0 \\ b & a & b \\ 0 & 2b & a \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & a + 2b & 0 \\ 0 & 0 & a - 2b \end{bmatrix}.$$