Linear Algebra I

30/01/2018, Tuesday, 14:00-17:00

You are NOT allowed to use any type of calculators.

$$
1 \quad \text { Linear systems of equations } \quad(2+3+3+2+2+3=15 \text { pts })
$$

Consider the linear system of equations

$$
\begin{aligned}
2 x-y+3 z & =a \\
x-y+z & =b \\
7 x-2 y+12 z & =c
\end{aligned}
$$

in the unknowns x, y, and z.
(a) Write down the corresponding augmented matrix.
(b) Put it into the row echelon form.
(c) Determine the values of a, b, and c such that the system is consistent.
(d) Determine the lead and free variables when the system is consistent.
(e) Find the solution set.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, row echelon form, consistency, and set of solutions.

Solution:

1a: The augmented matrix is given by

$$
\left[\begin{array}{rrr|r}
2 & -1 & 3 & a \\
1 & -1 & 1 & b \\
7 & -2 & 12 & c
\end{array}\right]
$$

1b: By applying row operations, we obtain:

$$
\begin{aligned}
& {\left[\begin{array}{rrr|c}
1 & -1 & 1 & b \\
0 & 1 & 1 & a-2 b \\
0 & 5 & 5 & c-7 b
\end{array}\right] \xrightarrow{(3)=(3-5 \cdot(2)}\left[\begin{array}{rrr|c}
1 & -1 & 1 & b \\
0 & 1 & 1 & a-2 b \\
0 & 0 & 0 & c-5 a+3 b
\end{array}\right]}
\end{aligned}
$$

1c: The system is consistent of and only if $c=5 a-3 b$.
1d: When $c=5 a-3 b$, the lead variables are x and y whereas z is the free variable.

1e: From the echelon form, we see that

$$
y=a-2 b-z
$$

and

$$
x=b+y-z=a-b-2 z
$$

This leads to the general solution

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
a-b \\
a-2 b \\
0
\end{array}\right]+\alpha\left[\begin{array}{r}
-2 \\
-1 \\
1
\end{array}\right]
$$

Consider the $n \times n$ matrix of the form

$$
B_{n}=\left[\begin{array}{ccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right]
$$

Let $D_{n}=\operatorname{det}\left(B_{n}\right)$.
(a) Find D_{1}, D_{2}, and D_{3}.
(b) Expand along the first row and find numbers a and b such that $D_{n}=a D_{n-1}+b D_{n-2}$ for $n \geqslant 3$.
(c) Prove by induction on n that $D_{n}=n+1$ for $n \geqslant 3$.

REQUIRED KNOWLEDGE: Determinants, row/column operations.

Solution:

2a: Note that

$$
B_{1}=2, \quad B_{2}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \text { and } \quad B_{3}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Then, we have

$$
D_{1}=2, \quad D_{2}=3, \quad \text { and } \quad D_{3}=4
$$

2b: By expanding along the first row, we get

$$
\begin{aligned}
D_{n} & =\left|\begin{array}{ccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right| \\
& =2 \cdot\left|\begin{array}{cccccc}
2 & 1 & 0 & \cdots & 0 & 0 \\
1 & 2 & 1 & \cdots & 0 & 0 \\
0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right|-\left|\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 2 & 1 & \cdots & 0 & 0 \\
0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right|
\end{aligned}
$$

Now, we observe that the first determinant on the right hand side equals D_{n-1}. Expanding the second one along the first column, we see that it equals D_{2}. This means that

$$
D_{n}=2 D_{n-1}-D_{n-2}
$$

2c: From (2b), we already know that $D_{3}=4$. Assume that there exists n such that

$$
D_{k}=k+1
$$

for all k with $3 \leqslant k \leqslant n$. Note that

$$
D_{n+1}=2 D_{n}-D_{n-1}=2(n+1)-n=n+2
$$

Hence, $D_{n}=n+1$ for all $n \geqslant 3$.
(a) Let $X \in \mathbb{R}^{n \times n}$ and $S(X)=\left\{A \in \mathbb{R}^{n \times n} \mid A X+X A=0\right\}$. Show that $S(X)$ is a subspace of $\mathbb{R}^{n \times n}$. For $n=3$ and $X=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, find a basis for $S(X)$ and find its dimension.
(b) Let a and $b \neq 0$ be real numbers. Consider the functions $f(x)=e^{a x} \sin (b x), g(x)=$ $e^{a x} \cos (b x)$ and the subspace $S=\operatorname{span}(f, g)$ of the vector space of continuous functions. Let $L: S \rightarrow S$ be given by $L(h)=h^{\prime \prime}$ where $h^{\prime \prime}$ denotes the second derivative of h. Show that L is a linear transformation. Find its matrix representation relative to the basis (f, g).

REQUIRED KNOWLEDGE: Vector spaces, subspaces, basis, dimension, linear transformations, matrix representations.

SOLUTION:

3a: To show that $S(X)$ is a subspace, we begin with the observation that $0_{n \times n} \in S(X)$, that is $S(X) \neq \varnothing$. Let α be a scalar and $A \in S(X)$. Note that

$$
(\alpha A) X+X(\alpha A)=\alpha(A X+X A)=0
$$

Hence, we obtain $\alpha A \in S(X)$. This means that $S(X)$ is closed under scalar multiplication. Now, let A and B belong to $S(X)$ and note that

$$
(A+B) X+X(A+B)=(A X+X A)+(B X+X B)=0
$$

Thus, we see that $A+B \in S(X)$. This means that $S(X)$ is closed under vector addition. Consequently, $S(X)$ is a subspace.

Let $n=3$ and $X=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Suppose that

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \in S(X)
$$

By definition of $S(X)$, we have

$$
\begin{aligned}
0=A X+X A & =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & a_{11} & 0 \\
0 & a_{21} & 0 \\
0 & a_{31} & 0
\end{array}\right]+\left[\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
a_{21} & a_{11}+a_{22} & a_{23} \\
0 & a_{21} & 0 \\
0 & a_{31} & 0
\end{array}\right] .
\end{aligned}
$$

As such, we obtain $a_{11}+a_{22}=0, a_{21}=a_{23}=a_{31}=0$. Therefore, A must be of the form

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
a & b & c \\
0 & -a & 0 \\
0 & d & e
\end{array}\right] \\
& =a\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]+b\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+c\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+d\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+e\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Hence, we see that the matrices $\left\{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$ span the subspace $S(X)$. Also note that they are linearly independent. This means that they form a basis and the dimension of $S(X)$ is 5 .

3b: Let α and β be scalars and h and j belong to S. Note that

$$
L(\alpha h+\beta j)=(\alpha h+\beta j)^{\prime \prime}=\alpha h^{\prime \prime}+\beta j^{\prime \prime}=\alpha L(h)+\beta L(j)
$$

Therefore, L is a linear transformation.
In order to find the matrix representation, we need to apply the transformation on the basis vectors. First note that

$$
\begin{aligned}
& \left(e^{a x} \sin (b x)\right)^{\prime}=a\left(e^{a x} \sin (b x)\right)+b\left(e^{a x} \cos (b x)\right) \\
& \left(e^{a x} \cos (b x)\right)^{\prime}=-b\left(e^{a x} \sin (b x)\right)+a\left(e^{a x} \cos (b x)\right)
\end{aligned}
$$

As such, we have

$$
\begin{aligned}
\left(e^{a x} \sin (b x)\right)^{\prime \prime} & =a^{2}\left(e^{a x} \sin (b x)\right)+a b\left(e^{a x} \cos (b x)\right)+a b\left(e^{a x} \cos (b x)\right)-b^{2}\left(e^{a x} \sin (b x)\right) \\
& =\left(a^{2}-b^{2}\right)\left(e^{a x} \sin (b x)\right)+(2 a b)\left(e^{a x} \cos (b x)\right) \\
\left(e^{a x} \cos (b x)\right)^{\prime \prime} & =-a b\left(e^{a x} \sin (b x)\right)-b^{2}\left(e^{a x} \cos (b x)\right)+a^{2}\left(e^{a x} \cos (b x)\right)-a b\left(e^{a x} \sin (b x)\right) \\
& =(-2 a b)\left(e^{a x} \sin (b x)\right)+\left(a^{2}-b^{2}\right)\left(e^{a x} \cos (b x)\right)
\end{aligned}
$$

Consequently, the matrix representation is given by

$$
\left[\begin{array}{cc}
a^{2}-b^{2} & -2 a b \\
2 a b & a^{2}-b^{2}
\end{array}\right]
$$

Find the parabola of the form $y=a+b x^{2}$ that gives the best least squares approximation to the points:

x	0	1	2
y	0	2	3

REQUIRED KnOwLEDGE: Least-squares problem, normal equations.

Solution:

The corresponding least squares problem is given by

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right] .
$$

This leads to the following normal equations:

$$
\left[\begin{array}{cc}
3 & 5 \\
5 & 17
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
5 \\
14
\end{array}\right]
$$

Therefore, we obtain the least squares solution as

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
3 & 5 \\
5 & 17
\end{array}\right]^{-1}\left[\begin{array}{c}
5 \\
14
\end{array}\right]=\frac{1}{26}\left[\begin{array}{cc}
17 & -5 \\
-5 & 3
\end{array}\right]\left[\begin{array}{c}
5 \\
14
\end{array}\right]=\left[\begin{array}{c}
\frac{15}{26} \\
\frac{17}{26}
\end{array}\right] .
$$

(a) Let $M \in \mathbb{R}^{n \times n}$ and $p(s)=p_{k} s^{k}+p_{k-1} s^{k-1}+\cdots+p_{1} s+p_{0}$ be a polynomial. Show that if λ is an eigenvalue of M then $p(\lambda)$ is an eigenvalue of $p(M)=p_{k} M^{k}+p_{k-1} M^{k-1}+\cdots+p_{1} M+p_{0} I_{n}$.
(b) Let $A \in \mathbb{R}^{n \times n}$ be such that $A^{2}-A+I_{n}=0$.
(i) Show that A is nonsingular.
(ii) Show that n is an even number.
(iii) Show that the characteristic polynomial of A is $\left(\lambda^{2}-\lambda+1\right)^{\frac{n}{2}}$.
(iv) Show that $\operatorname{tr}(A)=\frac{n}{2}$ and $\operatorname{det}(A)=1$.

REQUIRED KNOWLEDGE: Characteristic polynomial, eigenvalues, determinant, trace, and determinant.

SOLUTION:

5a: Suppose that λ is an eigenvalue of M. Then, there must exists a nonzero x such that $M x=\lambda x$. Note that $M^{k} x=\lambda^{k} x$. This means that $p(M) x=p(\lambda) x$. Since x is not zero, we can conclude that $p(\lambda)$ is an eigenvalue of $p(M)$.

5a: alternative Let x be such that $A x=0$. Then, we have $0=\left(A^{2}-A+I\right) x=x$. Hence, A is nonsingular.

5a: yet another alternative From $A^{2}-A+I=0$, we see that $A-A^{2}=I$. This leads to $A(I-A)=I$. Therefore, A is nonsingular and $I-A$ is its inverse.

5b: (i) From (5a), we know that if λ is an eigenvalue of A then $\lambda^{2}-\lambda+1$ must be an eigenvalue of $A^{2}-A+I$. Since $A^{2}-A+I=0$, we see that if λ is an eigenvalue of A then $\lambda^{2}-\lambda+1=0$. Hence, we can conclude that all eigenvalues of A must be of the form $\frac{1}{2} \pm \frac{\sqrt{3}}{2}$. Therefore, A is nonsingular as zero is not an eigenvalue.
(ii) Suppose that n is odd. Since A is a real matrix, it must have a real eigenvalue. However, we already know from (i) that all eigenvalues of A are nonreal. Therefore, n must be even.
(iii) Since nonreal eigenvalues of a real matrix must occur in conjugate pairs. It follows from (i) that the characteristic polynomial of A is $\left(\lambda^{2}-\lambda+1\right)^{\frac{n}{2}}$.
(iv) We know that the trace of a matrix is equal to sum of its eigenvalues whereas its determinant equals the product of its eigenvalues. Note that $\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)=1$ and $\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)=1$. Therefore, it follows from (iii) that $\operatorname{tr}(A)=\frac{n}{2}$ and $\operatorname{det}(A)=1$.

Consider the matrix

$$
M=\left[\begin{array}{rrr}
a & 2 b & 0 \\
b & a & b \\
0 & 2 b & a
\end{array}\right]
$$

where a and $b \neq 0$ are real numbers.
(a) Show that a is an eigenvalue of M.
(b) Find an eigenvector corresponding to the eigenvalue a.
(c) Find other eigenvalues of M and corresponding eigenvectors.
(d) Determine the values of a and b such that M is nonsingular.
(e) Is M diagonalizable? If so, find a diagonalizer.

REQUIRED KNOWLEDGE: Eigenvalues, eigenvectors, and diagonalization, matrix exponential.

SOLUTION:

6a: Note that

$$
\operatorname{det}(a I-M)=\operatorname{det}\left(\left[\begin{array}{rrr}
0 & 2 b & 0 \\
b & 0 & b \\
0 & 2 b & 0
\end{array}\right]\right)=0
$$

since the first and the third rows of M are the same. Therefore, a must be an eigenvalue.
6b: We need to solve the homogeneous system

$$
0=(a I-M) x=\left[\begin{array}{rrr}
0 & 2 b & 0 \\
b & 0 & b \\
0 & 2 b & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

Since $b \neq 0$, we see that $x_{2}=0$. Since $b x_{1}+b x_{3}=0$, we see that

$$
\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

is an eigenvector corresponding to the eigenvalue a.
6c: The characteristic polynomial of M is given by

$$
\begin{aligned}
\operatorname{det}(\lambda I-M) & =\operatorname{det}\left[\begin{array}{ccc}
\lambda-a & -2 b & 0 \\
-b & \lambda-a & -b \\
0 & -2 b & \lambda-a
\end{array}\right]=(\lambda-a)^{3}-2 b^{2}(\lambda-a)-2 b^{2}(\lambda-a) \\
& =(\lambda-a)^{3}-4 b^{2}(\lambda-a) \\
& =(\lambda-a)\left((\lambda-a)^{2}-4 b^{2}\right)
\end{aligned}
$$

Therefore, we see that the eigenvalues are a and $a \pm 2 b$.
For the eigenvalue $a+2 b$, the eigenvectors are nontrivial solution of the homogeneous system

$$
0=((a+2 b) I-M) x=\left[\begin{array}{rrr}
2 b & -2 b & 0 \\
-b & 2 b & -b \\
0 & -2 b & 2 b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

Then, an eigenvector corresponding to the eigenvalue $a+2 b$ is given by

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

For the eigenvalue $a-2 b$, the eigenvectors are nontrivial solution of the homogeneous system

$$
0=((a-2 b) I-M) x=\left[\begin{array}{rrr}
-2 b & -2 b & 0 \\
-b & -2 b & -b \\
0 & -2 b & -2 b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

Then, an eigenvector corresponding to the eigenvalue $a-2 b$ is given by

$$
\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

6d: We know that the determinant is the product of eigenvalues. Therefore, M is nonsingular if and only if $a \neq 0$ and $a \neq 2 b$ and $a \neq-2 b$.
6e: Since $b \neq 0$, eigenvalues are distinct. As such, M is diagonalizable. Alternatively, M is diagonalizable since there are three linearly independent eigenvectors. A diagonalizer can be obtained from the eigenvector as follows:

$$
\left[\begin{array}{rrr}
a & 2 b & 0 \\
b & a & b \\
0 & 2 b & a
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rcr}
1 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a+2 b & 0 \\
0 & 0 & a-2 b
\end{array}\right] .
$$

